Gravitational waves and electrodynamics: new perspectives
نویسندگان
چکیده
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.
منابع مشابه
امواج گرانشی حرارتی در فاز شتابدار کیهان
Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of ...
متن کاملA Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves
Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...
متن کاملGravitatational Waves in G4v∗
Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in flat space-time. Coupling at the momentum level rather than at the “force-law” level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation ...
متن کاملRemarks on Lorentz and CPT Violation in Field Theory
The possibility of breaking Lorentz and CPT symmetries has been considered in several different contexts [1–6]. Most of them were dedicated to the extended quantum electrodynamics (QED) sector of the extended standard model (see e.g. Ref. [2, 3]). The initial motivation for consideration of Lorentz violation came from string theory [7, 8]. Its basic idea is that interactions in the underlying t...
متن کامل